Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Antimicrob Steward Healthc Epidemiol ; 3(1): e93, 2023.
Article in English | MEDLINE | ID: covidwho-2323351

ABSTRACT

The pace and trajectory of global and local environmental changes are jeopardizing our health in numerous ways, among them exacerbating the risk of disease emergence and spread in both the community and the healthcare setting via healthcare-associated infections (HAIs). Factors such as climate change, widespread land alteration, and biodiversity loss underlie changing human-animal-environment interactions that drive disease vectors, pathogen spillover, and cross-species transmission of zoonoses. Climate change-associated extreme weather events also threaten critical healthcare infrastructure, infection prevention and control (IPC) efforts, and treatment continuity, adding to stress to strained systems and creating new areas of vulnerability. These dynamics increase the likelihood of developing antimicrobial resistance (AMR), vulnerability to HAIs, and high-consequence hospital-based disease transmission. Using a One Health approach to both human and animal health systems, we can become climate smart by re-examining impacts on and relationships with the environment. We can then work collaboratively to reduce and respond to the growing threat and burden of infectious diseases.

4.
One Health ; 13: 100301, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1340781

ABSTRACT

Emerging diseases of zoonotic origin such as COVID-19 are a continuing public health threat in China that lead to a significant socioeconomic burden. This study reviewed the current laws and regulations, government reports and policy documents, and existing literature on zoonotic disease preparedness and prevention across the forestry, agriculture, and public health authorities in China, to articulate the current landscape of potential risks, existing mandates, and gaps. A total of 55 known zoonotic diseases (59 pathogens) are routinely monitored under a multi-sectoral system among humans and domestic and wild animals in China. These diseases have been detected in wild mammals, birds, reptiles, amphibians, and fish or other aquatic animals, the majority of which are transmitted between humans and animals via direct or indirect contact and vectors. However, this current monitoring system covers a limited scope of disease threats and animal host species, warranting expanded review for sources of disease and pathogen with zoonotic potential. In addition, the governance of wild animal protection and utilization and limited knowledge about wild animal trade value chains present challenges for zoonotic disease risk assessment and monitoring, and affect the completeness of mandates and enforcement. A coordinated and collaborative mechanism among different departments is required for the effective monitoring and management of disease emergence and transmission risks in the animal value chains. Moreover, pathogen surveillance among wild animal hosts and human populations outside of the routine monitoring system will fill the data gaps and improve our understanding of future emerging zoonotic threats to achieve disease prevention. The findings and recommendations will advance One Health collaboration across government and non-government stakeholders to optimize monitoring and surveillance, risk management, and emergency responses to known and novel zoonotic threats, and support COVID-19 recovery efforts.

5.
Bull World Health Organ ; 99(5): 342-350B, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1221887

ABSTRACT

OBJECTIVE: To describe and quantify the extent of wildlife and environment sector inclusion in country evaluation and prioritization tools for health security, and to provide practical recommendations for global and national action to improve pandemic prevention and preparedness. METHODS: To assess coverage of wildlife and other environmental aspects, we reviewed major health security reports (including World Organisation for Animal Health Performance of Veterinary Services reports, and World Health Organization Joint External Evaluations and follow-on National Action Plans for Health Security) published by 107 countries and territories. We extracted information on stated coverage gaps, wildlife surveillance systems and priority diseases. We also searched National Biodiversity Strategies and Action Plans published by 125 countries to assess whether disease surveillance or prevention activities were included. FINDINGS: We noted that the occurrence frequency of keywords indicative of wildlife, environment, biodiversity and climate factors varied with type of report and between countries. We found that more than half (57.9%, 62/107) of the reporting countries did not provide any evidence of a functional wildlife health surveillance programme. Most countries (83.2%, 89/107) indicated specific gaps in operations, coordination, scope or capacity. Only eight of the 125 countries (6.4%) publishing a National Biodiversity Strategy and Action Plan reported tangible activities related to wildlife health or zoonotic disease. CONCLUSION: Overall, despite their importance for pandemic prevention, wildlife and environmental considerations are neglected in health security priorities and plans. Strengthening wildlife health capacity and operations should be emphasized in One Health efforts to monitor and mitigate known and novel disease risks.


Subject(s)
Animals, Wild , Pandemics , Animals , Global Health , Pandemics/prevention & control , World Health Organization , Zoonoses/epidemiology , Zoonoses/prevention & control
6.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-841420

ABSTRACT

Infectious disease outbreaks pose major threats to human health and security. Countries with robust capacities for preventing, detecting and responding to outbreaks can avert many of the social, political, economic and health system costs of such crises. The Global Health Security Index (GHS Index)-the first comprehensive assessment and benchmarking of health security and related capabilities across 195 countries-recently found that no country is sufficiently prepared for epidemics or pandemics. The GHS Index can help health security stakeholders identify areas of weakness, as well as opportunities to collaborate across sectors, collectively strengthen health systems and achieve shared public health goals. Some scholars have recently offered constructive critiques of the GHS Index's approach to scoring and ranking countries; its weighting of select indicators; its emphasis on transparency; its focus on biosecurity and biosafety capacities; and divergence between select country scores and corresponding COVID-19-associated caseloads, morbidity, and mortality. Here, we (1) describe the practical value of the GHS Index; (2) present potential use cases to help policymakers and practitioners maximise the utility of the tool; (3) discuss the importance of scoring and ranking; (4) describe the robust methodology underpinning country scores and ranks; (5) highlight the GHS Index's emphasis on transparency and (6) articulate caveats for users wishing to use GHS Index data in health security research, policymaking and practice.


Subject(s)
Global Health , Security Measures/organization & administration , Benchmarking/organization & administration , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Humans , Leadership , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL